

La rete ASIF e il contributo ENEA

A. Cemmi ENEA, Gamma irradiation facility Laboratory (NUC-IRAD-GAM) - C. R. Casaccia, Roma

Convegno ENEA – INFN: collaborazioni in essere e sviluppi futuri. ENEA Frascati R.C., November 5, 2024.

- The ASIF Program: objectives

- The ENEA irradiation plants and facilities

- ENEA – INFN collaborations

The Space exploration: challenges and opportunities

Space environment: primary and secondary radiations

The ASIF Program

- Standardization of the facilities and operating procedures
- Standardization, dosimetry
- Interactive portal implementation (ASIF gateway)

Dosimetry

٠

The ASIF Program: ASIF gateway

The ASIF gateway website provides comprehensive about:

- technical information of the different facilities:
- conditions of use;
- availability and beam time booking tool.

http://www.asif.asi.it/

handled by Milano Bicocca University (Physics Dept.)

The ASIF Program: research and testing at ENEA

QUALIFICATION TESTS

Electrical and electronic components and devices (standard ESA-ESCC, MIL)

TOTAL IONIZING DOSE (TID; gamma)

DISPLACEMENT DAMAGE DOSE (DDD, TNID; neutrons, protons)

SINGLE EVENT EFFECTS (SEE; heavy ions, neutrons, protons)

RADIATION HARDNESS & DAMAGE

- Materials (optics, polymers, solid matrices)
- Systems, sensors
- Instruments

DOSIMETRY

Innovative active and passive dosimetric systems

The ASIF Program: Calliope gamma facility (ENEA Casaccia R.C.)

The ASIF Program: TAPIRO research reactor (fast neutrons, Casaccia R. C.)

The ASIF Program: TRIGA RC-1 research reactor (thermal neutrons, Casaccia R. C.)

Thermal pool reactor, based on the TRIGA MARK II design by General Atomic.

Central irradiation channel and Lazy Susan

Core:

- 111 elements (standard TRIGA fuel element, enriched at 20% in ²³⁵U) in aluminum vessel 7 meters deep, filled with demineralized water (moderating, cooling and shielding).
- maximum thermal power of 1 MW.

ISO 9001

Channel description	Neutron flux (ncm ⁻² s ⁻¹)
Lazy Susan	2.00 10 ¹²
Pneumatic transfer system(rabbit)	1.25 10 ¹³
Central channel	2.68 10 ¹³
Thermal column collimator	~1 10 ⁶
Tangential piercing channel	~1 10 ⁸

The ASIF Program: Frascati Neutron Generator (FNG, Frascati R. C.)

Linear electrostatic accelerator, in which up to 1 mA D⁺ ions are accelerated to hit a tritiated target

		Two different operating conditions			
	D-T ope	eration	D-D operation	on 📥	
Neutron yields (accuracy 3%) Energy	1 10 ¹¹ n/s max. 14 MeV		1 10 ⁹ n/s max. 2.5 MeV		Max. flux: 5x10 ⁹ n/(cm ² s)
Flux vs irradiation volume	10 ⁷ /s/(4	* π*m²)	10 ⁵ /s/(4* π*m	²)	

Target

The ASIF Program: TOP-IMPLART proton linear accelerator (Frascati R. C.)

The ASIF Program: REX electron linacs accelerator (Frascati R. C.)

REX: Removable Electron to X-ray source (Max energy: 5 MeV)

Pulse lenght	3 µs
Pulse current (max)	150 mA
Electrons per pulse (max)	2.95·10 ¹²
Pulse Repetition Frequency	20 Hz
Average current (max)	9 µA
Electrons per second (max)	5.6·10 ¹³
Electron beam size 5 cm from the linac exit (FWHM)	20 mm

The irradiation chamber can be equipped with a **remote positioning system** to scan the specimens for the complete exposure to the beams.

The ASIF Program: TECHEA electron linear accelerator (Frascati R. C.)

Prone Breast System prototype

Converted from X rays to electrons configuration

Target in fixed position

Rotation angle of the beam 270°	Parameter	Value
source	Rotation angle of the beam	270°
	source	210
Source-isocenter distance 60 cm	Source-isocenter distance	60 cm
Treatment couch position fixed	Treatment couch position	fixed
Electron beam energy 3 MeV	Electron beam energy	3 MeV
Dose rate at isocenter 1.5 Gy/min	Dose rate at isocenter	1.5 Gy/min
Maximum spot diameter 14 cm	Maximum spot diameter	14 cm

ENEA – INFN: past and current collaborations

Thank you for your attention (

alessia.cemmi@enea.it

