Collaborazione ENEA-INFN Attività su Laser a Elettroni Liberi (FEL) e Ondulatori

Alberto Petralia

ENEA, Dipartimento Nucleare (NUC)

a nome della collaborazione ENEA-INFN sui FEL

ENEA-INFN: collaborazioni in essere e sviluppi futuri, 5 Novembre 2024, ENEA Frascati

Argomenti e temi della collaborazione

- 1. SPARC FEL:
- Esperimenti di generazione radiazione FEL da fascio accelerato a plasma
- Operazione linea ondulatori ENEA presso laboratorio SPARC_LAB dell'INFN LNF
- 2. SABINA sorgente THz FEL:
- Modello preliminare ondulatore (poi realizzato da KYMA s.p.a.)
- Analisi delle misure magnetiche
- Misure stress meccanico

3. EuPRAXIA@SPARC_LAB - X-Ray plasma accelerator based FEL:

- Modello e progettazione dell'ondulatore per la linea AQUA
- Studio degli effetti di wakefield nella guida dell'ondulatore
- Trasporto del fascio di elettroni nell'ondulatore
- Studio delle tolleranze dei parametri per l'operazione del FEL
- Redazione capitolo «Undulators» per il TDR
- 4. EuPRAXIA Preparatory Phase (PP)
- INFN coordinatore del progetto
- ENEA coordinatore del WP9 RF, Magnets & Beamline Components (F.Nguyen)

EůPR/

Nuovo accordo in via di definizione per la prosecuzione delle attività e progettazione della macchina EuPRAXIA@SPARC_LAB

1. SPARC FEL: 2020-2022 FEL pilotato da acceleratore a plasma

- Dimostrazione (prima volta al mondo) di amplificazione FEL con fascio di elettroni accelerati a plasma (beam-driven)
- Esperimento realizzato in due configurazioni FEL (SASE e Seeded)

Article

Nature | Vol 605 | 26 May 2022 | 659

Free-electron lasing with compact beam-driven plasma wakefield accelerator

https://doi.org/10.1038/s41586-022-04589-1	R. Pompili ¹ , D. Alesini ¹ , M. P. Anania ¹ , S. Arjmand ¹ , M. Behtouei ¹ , M. Bellaveglia ¹ , A. Biagioni ¹ ,
Received: 11 June 2021	B. Buonomo ¹ , F. Cardelli ¹ , M. Carpanese ² , E. Chiadroni ¹ , A. Cianchi ^{3,4,5} , G. Costa ¹ , A. Del Dotto ¹ , M. Del Giorno ¹ , F. Dinace ¹ , A. Doria ² , F. Filippi ² , M. Galletti ^{3,4,5} , I. Giannessi ¹ , A. Giribono ¹
Accepted: 25 February 2022	P. Iovine ⁶ , V. Lollo ¹ , A. Mostacci ⁷ , F. Nguyen ² , M. Opromolla ⁸ , E. Di Palma ² , L. Pellegrino ¹ ,
Published online: 25 May 2022	A. Petralia ² , V. Petrillo ⁸ , L. Piersanti ¹ , G. Di Pirro ¹ , S. Romeo ¹ , A. R. Rossi ⁸ , J. Scifo ¹ , A. Selce ² , V. Shpakov ¹ , A. Stella ¹ , C. Vaccarezza ¹ , F. Villa ¹ , A. Zigler ^{1,9} & M. Ferrario ¹

¹Laboratori Nazionali di Frascati, Frascati, Italy. ²ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy. ³University of Rome Tor Vergata, Rome, Italy. ⁴INFN Tor Vergata, Rome, Italy. ⁵NAST Center, Rome, Italy. ⁶INFN Napoli, Naples, Italy. ⁵Sapienza University, Rome, Italy. ⁸INFN Milano, Milan, Italy. ⁹Racah Institute of Physics, Hebrew University, Jerusalem, Israel. [©]e-mail: riccardo.pompili@Inf.infn.it PHYSICAL REVIEW LETTERS 129, 234801 (2022)

Stable Operation of a Free-Electron Laser Driven by a Plasma Accelerator

M. Galletti⁰, ^{1,2,3,*} D. Alesini,⁴ M. P. Anania,⁴ S. Arjmand,⁴ M. Behtouei,⁴ M. Bellaveglia,⁴ A. Biagioni,⁴ B. Buonomo,⁴ F. Cardelli,⁴ M. Carpanese,⁵ E. Chiadroni,^{4,6} A. Cianchi,^{1,2,3} G. Costa,⁴ A. Del Dotto,⁷ M. Del Giorno,⁴ F. Dipace,⁴ A. Doria,⁵ F. Filippi,⁵ G. Franzini,⁴ L. Giannessi,⁴ A. Giribono,⁴ P. Iovine,⁸ V. Lollo,⁴ A. Mostacci,⁶ F. Nguyen,⁵ M. Opromolla,^{9,10} L. Pellegrino,⁴ A. Petralia,⁵ V. Petrillo,^{9,10} L. Piersanti,⁴ G. Di Pirro,⁴ R. Pompili,⁴ S. Romeo,⁴ A.R. Rossi,¹⁰ A. Selce,^{5,11} V. Shpakov,⁴ A. Stella,⁴ C. Vaccarezza,⁴ F. Villa,⁴ A. Zigler,^{4,12} and M. Ferrario⁴ ¹Department of Physics, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy ²INFN-Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy ³NAST Center, Via Ricerca Scientifica 1, 00133 Rome, Italy ⁴Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy ⁵ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy ^oSapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy ⁷ENEA, C.R. Brasimone, 40032, Camugnano, Bologna, Italy ⁸INFN-Napoli, Via Cintia, 80126 Naples, Italy ⁹Università degli Studi di Milano, Via Celoria 16 20133 Milano Italy ¹⁰INFN-Milano, Via Celoria 16, 20133 Milan, Italy ¹¹INFN-Roma Tre, Via della Vasca Navale 84, 00146 Roma RM, Italy 3

Convegno ENEA-INFN, 5 Novembre 2024, ENEA Frasca Frasca Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

2. SABINA: ondulatore APPLE X

- 2020 Modello magnetico preliminare
- 2021-2023 Aggiudicazione, realizzazione e misure magnetiche, KYMA s.p.a.
- 2023-2024 Analisi misure magnetiche e misure di stress meccanico
- 2024-2025 Prevista istallazione e inizio operazione

Alto campo Schema compatto Polarizzazione variabile Sorgente FEL THz @ λ ~ 10-100 μm Operazione a energia 30-100 MeV Tre moduli per l'intera linea Simulazioni con codice RADIA

*

Parametri ondulatore

Parameter	Value
Material	NdFeB
Remanent field B_r	1.28-1.31
Period λ_u	55 mm
Blocks per period	4
Block magnet x,y,z size	28 mm x 28 mm
	x 13.65 mm
Aperture diameter ϕ	14.84 mm
Minimum gap	5 mm
B_{max} (in LP)	0.97 T
K_{max} (in LP)	4.9
$K_{\rm rms}$ max	3.5
Tuning range @ 30 MeV	20 - 100 µm
Tuning range @ 100 MeV	2 - 10 µm
N periods	22 (23.5)
Module length	1.35 m

2. SABINA APPLE X: Caratteristiche Magnetiche

- $K = 1 @ gap \simeq 18 mm$
- Δz determina la polarizzazione
- $K_x \in K_y$ stessa variazione con la fase
- Stesso *K_{rms}* per tutte le configurazioni di polarizzazione

- Buon accordo con il modello ideale
- Profilo parabolico per x,y < 2 mm
- Zona di omogeneità del campo ($\Delta B \eta / \Delta \eta$ < 0.1%) per η (=x,y) < 300 µm dall'asse

- angolo di uscita trascurabile
- offset in uscita < 200 μ m

2. SABINA APPLE X: misure di deformazione con Fiber Bragg Grating

Grazie al contributo del Laboratorio di Interferometria Olografica e Sensori in Fibra Ottica (HIFOS) dell'ENEA è stata misurata la deformazione della struttura meccanica dell'APPLE-X. La deformazione della fibra produce una variazione dell'indice di rifrazione del nucleo della fibra (Sensore FBG) \rightarrow ogni movimento produce una variazione nello spettro della luce misurata

$$1\mu strain \left(=1\frac{\mu m}{m}\right) \iff \Delta \lambda = 1.2pm$$

Test effettuati sull'APPLE-X

- Dipendenza dalla temperatura ambientale, variazione 3 °C
- Forze magnetiche con la variazione della gap e della fase di operazione.
- I sensori sono usati in due modi:
 - Misura della tensione (strain measurement), incollando la fibra totalmente aderente alla piastra di supporto dei magneti;
 - Misura di allargamento delle giunzioni (gap sensors), sensori sulla giunzione delle piastre adiacenti.
 - Massima deformazione 180 nm su gap sensor
 - Massima deformazione 100 nm sui 2.7°C in 15 ore
 - Diagnostica estremamente sensibile
 - Struttura meccanica rigida, deformazione trascurabile per le prestazioni del FEL

Fiber Bragg

Grating

TRANSMITTED

STRIBUTED

BRAGG

LIGHT

REFLECT

LIGHT

<u>HIFOS ENEA Lab.</u> M.Caponero

3. EuPRAXIA@SPARC_LAB

FEL user facility @ $\lambda \sim 3-5$ nm (water window) Operazione a energia 1 GeV del fascio di elettroni accelerati tramite RF linac + stadio di accelerazione a Plasma

Di prossima realizzazione ai laboratori NFN di Frascati Technical Design Report in sviluppo, da ultimare entro il 2025

AQUA: Soft-X ray SASE FEL – Water window optimized for 4 nm (baseline)
 SASE FEL: 10 UM Modules, 2 m each – Two technologies under study: Apple-X PMU and planar SCU

2 FEL lines

2) ARIA: VUV Seeded HGHG FEL beamline – Wavelength range 290 – 430 nm

SEEDED FEL: Modulator 3 m + 4 Radiators APPLE II – variable pol. 2.2 m each, based on FERMI FEL-1

3. EuPRAXIA@SPARC_LAB: ondulatore APPLE X per la linea FEL AQUA

Perché un APPLE X? . I requisiti sulla radiazione e i vincoli sui parametri del fascio determinano:

$$\frac{E_{max} = 1 \text{ GeV}}{\underline{\lambda}_{res} = 4 \text{ nm}} \longrightarrow \lambda_{res} = \frac{\lambda u}{2\gamma^2} (1 + K_{rms}^2) \longrightarrow \lambda_u = 18$$

- Tipo APPLE: Polarizzazione variabile, Lineare/Circolare
- L' APPLE X permette un campo più alto a parità di apertura per una guida circolare con diametro di **5.5 mm**
- Totale simmetria tra le coordinate trasverse x e y
- $\lambda_u = 18 \text{ mm}$ consente più ampio manico di tuning
- Gap piccola a λ_u = 18 mm, per avere K>1
- Gap minima gap 1.5 mm, non meno per questioni meccaniche

Parametri di base dell'Ondulatore

Material	NdFeB	Min. gap	1.5 mm
Remanent field	1.35 T	Aperture	6 mm
Block / period	4	B max (K max) in LP	0.93 T (K = 1.57)
Block x,y,z size	18x18x4.4 mm	K rms range	1.11 – 0.6
Und. Period	18 mm	Tuning range	3.5 – 5.24 nm
N periods	110	Module length	2 m

3. EuPRAXIA@SPARC_LAB: ondulatore APPLE X per la linea FEL AQUA

0.8 GeV

0.9 GeV

Tuning range dipendenza dall'energia K rms λ (nm working point degli elettroni @ 4nm 1.0 @ 1 GeV $\lambda = \frac{\lambda u}{2 v^2} \left(1 + K_{rms}^2 \right)$ λ = 3.5 nm 0.8 0.6 λ = 5.24 nm 0.4 gap (mm) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0

Altre caratterisiche (dalle simulazioni, codice RADIA)

- Campo trasverso: profilo parabolico per η (=x,y) < 1.5 mm
- Zona di omogeneità del campo ($\Delta B_n / \Delta \eta < 0.1\%$) < 150 µm
- Traiettoria: angolo massimo in uscita (da integrale 1°) < 1 μ rad
- Traiettoria: massimo offset in uscita (da integrale 2°) < 1 μ m

Prossimi passi:

- Studio proprietà di focheggiamento
- **Progettazione Phase Shifters**
- Definizione struttura meccanica (rescaling dell'ondulatore di SABINA)

3. EuPRAXIA@SPARC_LAB: Canale da vuoto e Wakefields

Quale diametro d scegliere per il canale da vuoto?

- Il diametro esterno determina la dimensione del foro centrale dell'ondulatore (apertura) e il valore massimo del campo magnetico
- Vengono generati effetti di Wakefields che possono influenzare sia il trasporto del fascio (WK trasversi) che la potenza FEL generata (WF longitudinali) dipendentemente dalla dimensione del canale

Pipe diameter (ext)	5 mm	5.5 mm	6 mm
φ aperture (mm)	5.515	6.081	6.505
B max (T) (in LP)	1	0.94	0.87
K rms	1.2	1.11	1.04
max wl (nm)	5.79	5.25	4.9

Resistive wall (RW) Wakefields: per un tubo a simmetria cilindrica

- Il WF longitudinale (monopolo) genera un degrado dell'energia del fascio e un aumento dell'energy spread
- Il WF trasverso (dipolo) produce un aumento dell'emittanza e dipende dalla traiettoria degli elettroni

La minimizzazione dei Wakefield richiede:

- una superficie liscia e regolare,
- Evitare il più possibile discontinuità nel canale (es. nelle transizioni nelle zone di pompaggio del vuoto)
 - Evitare coating che aumentano gli effetti di WF

Gli effetti dati dai Wakefield sulle prestazioni del FEL sono stati:

- Calcolati in funzione del raggio della guida (long. WF formule da M. Migliorati, F.Bosco et al., trasv. WF – formule da K. Bane & G. Stupakov)
- Considerati nelle simulazioni eseguite con il codice di simulazione FEL 3D
 Genesis1.3 per i fasci di elettroni di AQUA nelle varie configurazioni di lavoro

I risultati ottenuti dimostrano che per un canale da vuoto con un diametro interno d = 5 mm (ext 5.5 mm) gli effetti di wakefield sia longitudinale che trasverso sono trascurabili

Courtesy of F.Nguyen (ENEA NUC)

3. EuPRAXIA@SPARC_LAB: studio delleTolleranze e prestazioni FEL

- la variazione dell'emittanza e dell'energy spread,

Considerando:

- le traiettorie dovute a: angolo e offset in ingresso, disallineamento nel canale
 - di trasporto magnetico (quadrupoli) e agli errori magnetici dgli ondulatori

Modello Semi-Analitico e sim. 3D per calcolare le prestazioni FEL in polarizzazione lineare/circolare

- Working point: photon energy 4 nm = 310 eV a 1 GeV,
- Corrente di picco 1.5 kA, lunghezza bunch FWHM 5 fs, $\beta x = \beta y = 10$ m, e emittanza $\epsilon x = \epsilon y$
- Distribuzione gaussiana dei vari parametri del fascio
- Massima lunghezza di saturazione accettabile L sat <20 m

Per avere > 60% della

potenza nominale del FEL

 N_v /pulse $\approx 10^{11}$

4. EuPRAXIA PP - WP9: cosa bolle in pentola?

 Principale Obiettivo: oriente e nella progettazione dei con specificare in dettaglio i R&D su potenziali protote coordinare le richieste dei definizione dei concetti e 	are il progresso tecnico nello svilu mponenti della macchina FEL Centri di Eccellenza ipi dei vari componenti i finanziamenti e dei parametri verso il TDR	ippo •	Magneti compa permanenti) pe Sorgenti a radio per accelerator	atti (elettromagnetici o er il trasporto del fascio ofrequenza di alta potenza ri convenzionali
Courtesy of F.Nguyen (ENEA NUC)	Alta qualità, alta stabilità dei fasci e impulsi di luce in machine	di elettroni e compatte	Sviluppo di ond per generazion	lulatori magnetici compatti e di radiazion FEL
Undulators • ENEA (Italy) • ALBA (Spain) • ELI (Czech Republic) • INFN (Italy) • UKRI Great Britain)	 Beamline magnets ALBA (Spain) CERN (Switzerland) ELI (Czech Republic) IASA (Greece) INFN (Italy) UKRI Great Britain) 	RF comp CERN (Sw CLPU (Spa DESY (Ge IASA (Gre INFN (Ital Sapienza	vitzerland) ain) rmany) eece) ly) Un. (Italy)	WP8 - Theory & Simulation J. Vieria, IST H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & Systems K. Cassou, CNRS J. Osterhoff, DESY

Lavori in corso e Sviluppi futuri

1. SPARC FEL:

- Esperimenti di generazione radiazione
 FEL da fascio accelerato a plasma
- Nuove configurazioni della sorgente di plasma per aumento del gradiente accelerante
- Radiazione FEL con fasci a più grande energia da fasci accelerati a plasma

2. SABINA - THz FEL source:

- Completamento istallazione ondulatori
- Operazione della linea ondulatori e test su fascio
- Sviluppo apparati per misure magnetiche su ondulatori a piccola apertura

- 3. EuPRAXIA@SPARC_LAB (ondulatore AQUA):
- Completamento studio tolleranze e simulazioni start to end
- Progetto phase shifters
- Studio proprietà di focheggiamento
- > Definizione della struttura meccanica dell'ondulatore
- Progettazione componenti linea ondulatori, trasporto del fascio e diagnostiche
- Completamento redazione del TDR (ENEA, WP 18 Undulators)
- Sviluppo tecniche e strumentazione per misure magnetiche su ondulatori Apple X con piccola apertura
- Possibile attività congiunta sullo sviluppo della seconda linea FEL ARIA
 - 4. EuPRAXIA Preparatory Phase (PP)
 - Verso la realizzazione dell'infrastruttura EuPRAXIA
 - Possibile attività sulla sviluppo di ondulatori compatti

Conclusioni

- ENEA e INFN hanno una collaborazione pluridecennale sulle attività riguardanti i Laser a Elettroni Liberi (FEL)
- Importanti risultati scientifici ottenuti nel campo dei FEL e più recentemente sui FEL pilotati da acceleratore a plasma
- ENEA collabora con INFN ai lavori per la realizzazione e prossimo esercizio della linea THz SABINA presso INFN LNF
- INFN è impegnato nella progettazione della macchina EuPRAXIA@SPARC_LAB presso INFN LNF e ENEA è coinvolto per la progettazione della linea ondulatori e stesura del TDR della macchina (entro il 2025)
- In via di firma il nuovo accordo di collaborazione per attività su EuPRAXIA@SPARC_LAB, SABINA e SPARC
- Prosegue il lavoro verso la realizzazione dell'infrastruttura europea EuPRAXIA, INFN è capofila e ENEA è partner