

IFMIF/DONES -DTT/ICH

International Fusion Material Irradiation Facility Ion Cyclotron Heating

> Andrea Pisent and David Mascali INFN

Attività legate a DTT: situazione 2024

persone coinvolte:

<u>STAFF:</u> L. Celona, M. Costa, S. Gammino, G. Mauro, D. Mascali (RL), S. Passarello, G. Torrisi <u>Associati:</u> A. Cardinali (senior ENEA) <u>Contributo sinergico:</u> E. Naselli (Samothrace/PANDORA), A. Pidatella (NQSTI, PANDORA), G. Finocchiaro (PhD@UniCT) <u>Studenti:</u> Vittorio Francalanza (PhD@UniCT con borsa INFN su DTT) <u>Tutoring e/o collaborazione diretta:</u> C. Salvia (PhD student @ UniPD/ENEA Frascati), F. Ruffini (PhD student@ UniPD) <u>AdR*:</u> chiuso bando ad Aprile 2024 per AdR su ECH-Launcher, n.2 candidati

* DTT_INFN ha sostenuto dal 2021 n. 1 AdR per 2 anni (A Pidatella, 2021-2023) + n.1 AdR 6 mesi (G. Emma, ora PhD @ UniPD) + n.1 AdR (1 anno rinnovabile) in fase di selezione

	-				-				-			-				-		-		-		
WP: HCD	ICH A Conceptu	ntenna ual Design	Antenna_System	-																		
Partecipanti	Struttura		pm	%	Ore da rendicontare	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre					
Luigi Celona	LNS		1,00	8%	143,3	13,0	13,0	13,0	13,0	13,0	13,0	13,0	0,0	13,3	13,0	13,0	13,0					
Santo Gammino	LNS		1,00	8%	143,3	13,0	13,0	13,0	13,0	13,0	13,0	13,0	0,0	13,3	13,0	13,0	13,0					
	LNS (resp	onsabile																				
David Mascali	locale)		1,00	0 8%	143,3	13,0	13,0	13,0	13,0	13,0	13,0	13,0	0,0	13,3	13,0	13,0	13,0					
Giuseppe Torrisi	LNS		0,50) 4%	71,7	6,5	6,5	6,5	6,5	6,5	6,5	6,5	0,0	6,7	6,5	6,5	6,5					
Giorgio Mauro	LNS		1,00) 8%	143,3	13,0	13,0	13,0	13,0	13,0	13,0	13,0	0,0	13,3	13,0	13,0	13,0		E	urofucion		
Michele Costa	LNS		0,50) 4%	71,7	6,5	6,5	6,5	6,5	6,5	6,5	6,5	0,0	6,7	6,5	6,5	6,5			ulolusion		
																			- 10	liagnastic	ho ri	datt

e.m. design, CATIA modelling, ICH waves propagation and damping

Eurofusion (diagnostiche, ridotto rispetto a 2023)

4.3 ppm totali by

D Mascali G Torrisi G Mauro

	ECRH Launcher	4.11.1.4_ECL_ECH														
WP: HCD	Conceptual Design	Launcher														
Dentecinenti	Characteriza			Ore da		fabbasis				-1	lu elle					di a a sa ka
Partecipanti	Struttura	pm	%	rendicontare	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembi
	LNS (responsabile															
David Mascali	locale)	0,25	2%	35,8	3,0	3,0	3,3	3,3	3,3	3,3	3,3	0,0	3,4	3,3	3,3	3
Giuseppe Torrisi	LNS	0,25	2%	35,8	3,0	3,0	3,3	3,3	3,3	3,3	3,3	0,0	3,4	3,3	3,3	3
Santi Passarello	LNS	0,25	2%	35,8	3,0	3,0	3,3	3,3	3,3	3,3	3,3	0,0	3,4	3,3	3,3	3
AdR	LNS	9,00	75%	1290,0				161,3	161,3	161,3	161,3	0,0	161,3	161,3	161,3	16

Aggiornata in: Mascali 0.5, Torrisi 0.5, Mauro 1.0, Passarello 0.75 + AdR (verosimilmente 6 mesi nel 2024 + 6 mesi nel 2025)

LNS contribution to DTT 2023-2024: electromagnetic plasma heating (ICH and ECH)

diagnostics (reflectometry, X-ray, interfero-polarimetry)

Study of wave propagation in the ECR launcher ^{9 ×107} m system @ 170 GHz, 16 MW

3.66+06

2.4e+05

1.6e+05 1.2e+05 ICH (60-90 MHz, 4 MW): Antenna Conceptual Design made by LNS Advanced mechanical solutions for the ECH system (wg design, vacuum, cooling) thanks to the experience by ECRIS subsystems

Advanced, adaptive collimation systems (msec time res.) for X-ray spectroscopy and tomography

università Tuscia

BICOCCA

Focus on the Numerical Design and Optimization of a 3-strap antenna for DTT IC heating

G. S. Mauro¹, G. Torrisi¹, D. Mascali¹, A. Pidatella¹, C. Salvia⁷, S. Ceccuzzi^{2,3}, A. Cardinali³, D. Milanesio⁵, F. Mirizzi^{2,6}, A.A. Tuccillo^{2,6}

¹INFN-LNS, Catania, Italy ²DTT S.C. a r.l., Frascati, Italy ³ENEA, Frascati, Italy ⁴CNR-ISTP, Milano, Italy ⁵Politecnico di Torino, Torino, Italy ⁶Consorzio CREATE, Napoli, Italy ⁷Centro Ricerche Fusione, UniPD, Padova, Italy

Introduction

- The Divertor Tokamak Test (DTT) is a new facility designed by the Italian DTT Limited Liability Consortium (S.C.ar.l.) aimed at validating an integrated solution for the power exhaust in view of DEMO, now entered the realisation phase at the ENEA Frascati Research Centre.
- The needed condition of power flow to the divertor of 15 MW/m will be reached by **coupling to plasma up to 45 MW of additional power by a suitable mix of electron cyclotron resonance heating, neutral beam injection and ion cyclotron resonance frequency (ICRF) waves.**

Introduction

- DTT ICH system is designed to work in the frequency range 60 90 MHz, defined by the cyclotron resonances of ³He and H minorities, respectively, at the DTT magnetic axis in the reference 6 T scenarios.
- The ICH system is conceived in modular units. Each module relies on a pair of antennas that are fed in parallel, through external conjugate T or 3-dB hybrid couplers.
- The ICH system shall couple to the plasma 6 MW (3 MW for the day-1 plasma, that means to use two equatorial ports) in the 60 90 MHz frequency range by means of four launchers, which can be of different types.
- INFN-LNS work deals with the design and optimization of a threestrap ICH antenna suitable to deliver Ion Cyclotron RF Power for the DTT facility.
- The antenna is being studied and optimized by using the commercial RF simulation software CST Studio Suite.
- Objective: optimize the antenna structure in order to couple a power ≥ 1.5 MW to the dielectric load, while at the same time minimizing the detrimental electric fields component parallel to the tokamak magnetic field.

CST curved antenna design

The curved antenna model has been designed by using CST Studio Suite.

The CST model is composed of:

- the antenna box, composed of three a) minor boxes, one for each strap, separated by two septa;
- b) the Faraday screen, composed of a fixed number of equally spaced rods;
- the three straps: the central one is fed c) by two coaxial cables, operated with a phase difference of 180°, the side ones are equal and fed each by a single coaxial, connected to a strip-line.
- The coaxial characteristic impedance is d) equal to 30 Ω .

Faraday screen is

magnetic field lines

Antenna optimization

- For the CST optimization, the plasma has been replaced by a homogeneous dielectric with $\varepsilon_r = 225$ and tg $\delta = 1.17 @ 90$ MHz.
- Between launcher and dielectric a vacuum layer with a depth of 60.8 mm has been inserted to simulate the SOL.
- Goal: couple a power ≥ 1.5 MW to the dielectric load with a progressive phase shift of 180° between toroidally adjacent straps inside the working frequency bandwidth ([60, 90] MHz).

The optimization procedure has been performed to maximize the structure minimum conductance, $\mathbf{G}_{\min, \text{tot}}$, that is related to the maximum power delivered to the dielectric load:

where $V_{standoff}$ is the maximum allowable voltage in the four coaxial cables, equal to 35

 $P_{coupled} = \frac{1}{2} \cdot G_{min,tot} \cdot V_{standoff}^2$

kV.

Workflow

Antenna design and update in CST (new model, different results, etc)

New design is simulated in TOPICA code to take into account the real plasma scenario

- Starting from the 'base' parameter values, several optimizations have been performed in terms of **g**_{min}.
- Actual results from 'best' configuration is reported below.

Coupled power for flat model:

- Pc_60MHz = 0.73 MW
- Pc_75MHz = 0.85 MW
- Pc_90MHz = 1 MW

required that $|\mathbf{E}| < 2.5$ MV/m and $|\mathbf{E}_{\parallel}| < 1.5$ MV/m everywhere inside the antenna box, in order to minimise spurious fields responsible for ion sputtering

Further optimization is ongoing...

Overall Scientific Outcomes

- G. S. Mauro, G. Torrisi, D. Mascali, L. Celona, S. Gammino, A. Pidatella, S. Ceccuzzi, A. Cioffi, A. Cardinali, D. Milanesio, F. Mirizzi, G.L. Ravera, A.A. Tuccillo, G. Vecchi, Design and Optimization of a curved three-strap antenna for DTT ICRH system, poster @ 33rd Symposium on Fusion Technology, 22 – 27 September 2024, Dublin City University, Ireland
- D Milanesio, DL Galindo Huertas, S Ceccuzzi, G Vecchi, B Baiocchi, A Cardinali, D Mascali, GS Mauro, F Mirizzi, A Pidatella, GL Ravera, G Torrisi, AA Tuccillo, The tunable resonant IC antenna concept and its design for DTT experiment, 2024 Nucl. Fusion 64 016015
- S. Ceccuzzi, B. Baiocchi, A. Cardinali, G. Di Gironimo, G. Granucci, D. Liuzza, D. Mascali, G. S. Mauro, D. Milanesio, F. Mirizzi, A. Pidatella, S. Piras, C. Ponti, G. L. Ravera, G. Schettini, G. Torrisi, A. A. Tuccillo, G. Vecchi; The ICRF antenna of DTT: Design status and perspectives. *AIP Conf. Proc.* 18 August 2023; 2984 (1): 030015. https://doi.org/10.1063/5.0162417
- G. S. Mauro, G. Torrisi, D. Mascali, L. Celona, S. Gammino, A. Pidatella, S. Ceccuzzi, B. Baiocchi, A. Cardinali, D. Milanesio, F. Mirizzi, C. Ponti, G.L. Ravera, A.A. Tuccillo G. Vecchi, Numerical Design and Optimization of a three-strap antenna for DTT IC heating, poster @ 32nd Symposium on Fusion Technology, 18 23 September 2022, Dubrovnik, Croatia
- G. Torrisi, D. Mascali, G. S. Mauro, A. Pidatella, S. Ceccuzzi, B. Baiocchi, A. Cardinali, D. Milanesio, F. Mirizzi, C. Ponti, G. L. Ravera, A. Tuccillo, G. Vecchi; Progress and verification of DTT ICRF antenna simulation using COMSOL. AIP Conf. Proc. 18 August 2023; 2984 (1): 060005. <u>https://doi.org/10.1063/5.0162609</u>
- F. Mirizzi, S. Ceccuzzi, B. Baiocchi, A. Cardinali, G. Di Gironimo, G. Granucci, D. Mascali, G. Mauro, D. Milanesio, A. Pidatella, C. Ponti, G.L. Ravera, G. Torrisi, A.A. Tuccillo, G. Vecchi, **Preliminary analysis of the ICRF launcher for DTT**, *Fusion Engineering and Design*, Volume 191, 2023, 113788, https://doi.org/10.1016/j.fusengdes.2023.113788
- F. Fanale et al., "Status of DTT ECH Transmission Lines and Antennae," in IEEE Transactions on Plasma Science, doi: 10.1109/TPS.2024.3382745.

- A. Romano et al., "The design of the ECRH system of DTT" in 21st joint workshop on electron cyclotron emission (ECE) and electron cyclotron resonance heating (ECRH)
- F. Fanale *et al.*, "Overview of DTT ECH antennae design and challenges" 22nd Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH), April 22-26, 2024, Daejeon, South Korea
 Diagnostics
- F Filippi, D Fiorucci, A Fassina, L Giudicotti, C Mazzotta, G Rocchi, R Rossi, D Terranova, O Tudisco, P Andreoli, M Cipriani, F Consoli, P Gaudio, M Gelfusa, P Innocente, G Mauro, D Mascali, E Naselli, FP Orsitto, G Torrisi, *Study for a tangential dispersion interferometer/polarimeter for DTT*, Journal of Instrumentation Volume 17 (08) C08023, 2022
- D Fiorucci, A Fassina, F Filippi, C Mazzotta, G Rocchi, R Rossi, D Terranova, O Tudisco, P Andreoli, M Cipriani, F Consoli, P Gaudio, M Gelfusa, L Giudicotti, P Innocente, A Belpane, G Mauro, D Mascali, E Naselli, FP Orsitto, G Torrisi, Advances in the DTT poloidal interferometer/polarimeter design, Journal of Instrumentation, 17(02), C02023, 2022
- G. De Masi et al., "Design of the High Field Side DTT Plasma Position Reflectometer" submitted for 25th Topical Conference on High Temperature Plasma Diagnostics (2024)
- G. De Masi, R. Cavazzana, O. Tudisco, G. Rocchi, D. Mascali, G. Torrisi, A. Galatà, R. Agnello, F. da Silva, J. Santos, J. Ferreira, A. Silva, S. Heuraux, "Present status of the design of the reflectometric system for DTT", 6th International Conference Frontiers in Diagnostic Technologies, 19-21 October 2022
- Francesco Romanelli on behalf of DTT contributors, Divertor Tokamak Test facility Project: Status of Design and Implementation, submitted to Nuclear Fusion, 2024

CONVEGNO

LA FUSIONE TERMONUCLEARE: SCIENZA E TECNOLOGIA

18 ottobre 2024

Comitato ordinatore: Roberto ANTONELLI (Presidente dell'Accademia Nazionale dei Lincei), Maria Chiara CARROZZA (Presidente CNR), Giberto DIALUCE (Presidente ENEA), Carlo DOGLIONI (Vicepresidente dell'Accademia Nazionale dei Lincei, Presidente INGV), Giorgio PARISI (Linceo, Sapienza Università di Roma), Francesco PEGORARO (coordinatore, Linceo, Università di Pisa), Roberto RAGAZZONI (Linceo, Presidente INAF), Marco TAVANI (Linceo, INAF), Antonio ZOCOLI (Presidente INFN).

PROGRAMMA

In questi ultimi anni si è diffusa la consapevolezza che la fusione nucleare, in parallelo con le fonti di energia rinnovabili, possa e debba rappresentare la soluzione a lungo termine del problema della transizione energetica. A questo breve convegno parteciperanno ricercatori provenienti dai principali centri internazionali sulla fusione, da università attive nello studio della fisica dei plasmi e da compagnie private. Queste rappresentano un aspetto nuovo della ricerca sulla fusione.

Verranno discusse le iniziative da prendere per potenziare la ricerca sulla fusione termonucleare in Italia in un quadro che sottolinei le tematiche comuni alla ricerca sulla fusione, all'astrofisica, alla fisica dello spazio e lo stimolo che la sviluppo della fusione può dare alla introduzione di nuove tecnologie in una ampia gamma di applicazioni.

Venerdì 18 ottobre

9.30 Presidenza dell'Accademia dei Lincei: Indirizzi di saluto

Prima sessione: Stato della ricerca sulla Fusione Nucleare

- 9.45 Ambrogio FASOLI (Politecnico di Losanna Eurofusion): Fusione magnetica
- 10.05 Riccardo BETTI (University of Rochester): Fusione a confinamento inerziale

Seconda sessione: - 1 - Progetti in corso

- 10.25 Pietro BARABASCHI (ITER): Il progetto ITER
- 10.45 Francesco ROMANELLI (ENEA): Il progetto DTT
- 11.05 Coffee break
- 11.20 Marco VALISA (CNR, RFX): Il consorzio RFX
- 11.40 Carlo SOZZI (CNR, ISTP): Collaborazione con JT-60SA
- 12.00 Piero MARTIN (Università di Padova e Centro Interdisciplinare Linceo): SPARC e collaborazione tra Italia e USA
- 12.20 Andrea PISENT (INFN): Progetto IFMIF
- 12.40 Stefano ATZENI (Focused Energy): Focused Energy

Progetto IFMIF:

International Fusion Material Irradiation Facility

> Andrea Pisent INFN

Accademia dei Lincei 18.10.24

INFN Istituto Nazionale di Fisica Nucleare (Italy)

IFMIF attività per il test dei materiali

- test dei materiali
- Il programma di prototipi e progettazione sviluppato in questi anni in parallelo a ITER (denominato Broader Approach), con partecipazione essenziale di INFN ed ENEA (e industrie italiane).
- Le prospettive per la costruzione di una facility europea per il test dei materiali (DONES, vicino a Granada) ed il possibile contributo in-kind italiano.

INFN 2014 Spedizione per il Giappone dell'RFQ

 La struttura di un reattore è investita da un flusso estremamente intense di neutroni veloci (circa 14 MeV) rispetto ai reattori di fission per test dei materiali (MTRs)

- Passando del "First Wall" alle strutture interne c'è un'attenuatazione ed una traslazione nello spettro.
- La conoscenza approfondita delle proprietà dei materiali è necessaria per la progettazione e utile per il lincencing di DEMO

Danneggiamento del materiale in condizioni tipiche di un reattore di fusione

- I neutroni di alta energia interagiscono con i materiali del first wall e con i materiali strutturali (acciai speciali, tungsteno, SiC, e altri)
 - Collisioni elastiche causano dislocazioni degli atomi nel lattice
 - Catture neutroniche causano trasmutazioni (ad esempio formazione H/He¹ dpa/lifetime nel materiale con reazioni tipo ⁵⁶Fe(n,α)⁵³Cr con soglia 3.7 MeV)
- Fenomeni macroscopici osservati sono
 - Infragilimento (Embrittlement and increase of Ductile and brittle transition temperature)
 - Formazione ed esplosione di bolle di gas (swelling).
 - Danneggiamento saldature
- L'evoluzione dipende
 - Dai materiali
 - Dall' energia dei neutroni
 - Dal numero di dislocazioni per atomo (dpa)
 - Dalla temperatura dei materiali
- Dati sperimentali sono disponibili a livello di pochi dpa (sufficienti per reattori di ricerca a basso duty cycle) ma mancano nel range 10-100 dpa o più, livello atteso per le centrali a fusione

ITER

- Reattori di fissione danno il flusso, ma lo spettro è centrato ad energie troppo basse
- Per soddisfare il programma di test dei materiali di fusione si è deciso (qualche decade fa) di utilizzare deutoni su litio a circa 40 MeV

ad esempio formazione H/He nel materiale con reazioni tipo 56 Fe(n, α) 53 Cr con soglia 3.7 MeV

- Per aumentare la produzione (per una data $\sigma)$ è necessario
 - Un fascio di alta potenza
 - Un target spesso. La Potenza di fascio è dissipata nel target (principalmente per interazione elettromagnetica con gli elettroni del target).
 - Lunghi tempi di irraggiamento dei campioni (molti mesi a piena potenza).

- Per aumentare la produzione (per una data σ) è necessario
 - Un fascio di alta potenza
 - Un target spesso. La Potenza di fascio è dissipata nel target (principalmente per interazione elettromagnetica con gli elettroni del target).
 - Lunghi tempi di irraggiamento dei campioni (molti mesi a piena potenza).

- Per aumentare la produzione (per una data σ) è necessario
 - Un fascio di alta potenza
 - Un target spesso. La Potenza di fascio è dissipata nel target (principalmente per interazione elettromagnetica con gli elettroni del target).
 - Lunghi tempi di irraggiamento dei campioni (molti _ mesi a piena potenza).

IFMIF EVEDA (IFMIF Engineering Validation and Design Activities)

il progetto IFMIF-EVEDA comprende (approvato nel 2007, Broader approach complementare a ITER

- uno del circuito e del bersaglio di litio (Lithium Loop) e
- uno della Test Facility,
- un dimostratore dell'acceleratore (LIPAC) 1.2 MW di potenza di fascio

oltre a un disegno avanzato di IFMIF. LIPAC è in fase avanzata di costruzione a Rokkasho (Giappone) con il contributo di INFN, mentre le altre tasks sono state completate con successo.

IFMIF EVEDA

(IFMIF Engineering Validation and Design Activities)

il progetto IFMIF-EVEDA comprende (approvato nel 2007, Broader approach complementare a ITER

- uno del circuito e del bersaglio di litio (Lithium Loop) e
- uno della Test Facility,
- un dimostratore dell'acceleratore (LIPAC) 1.2 MW di potenza di fascio

oltre a un disegno avanzato di IFMIF. LIPAC è in fase avanzata di costruzione a Rokkasho (Giappone) con il contributo di INFN, mentre le altre tasks sono state completate con successo.

 LIPAC è stato costruito nella sua parte normal-conduttiva ed è nella fase di commissioning. La parte superconduttiva, equivalente al primo criomodulo di IFMIF sarà installata nei prossimi mesi.

- L'INFN, con i Laboratori Nazionali di Legnaro e con le sezioni di Torino, Bologna e Padova, ha realizzato l'RFQ di LIPAC, forse la componente piu' difficile in quanto i parametri di intensità del fascio (125 mA di deutoni con 100% duty cycle) superano quelli di ogni altro RFQ finora realizzato.
- Phase B+ (Injector+RFQ+MEBT+HEBT+HPBD) conclusa in giugno 2024, raggiunto 8.75% beam duty (pulse width 3.5 ms repetition period 40 ms)
- La limitazione è legata ai coupler ed al Sistema RF, sui quali è in essere un programma di consolidamento

INFN contract with F4E for new power coupler construction

- New RFQ couplers for LIPAc and DONES (175 MHz, 200 kW cw)
- Bulk coupler structure water cooled (like present INFN couplers)
- Brazed alumina window (instead of o-ring), window water cooling.
- Smaller coaxial line in vacuum to avoid multipacting susceptibility in the operation power range.
- Kick off meeting June 2024, final delivery end 2027

- DONES, è la versione europea di IFMIF
- Facility per il test dei materiali ottimizzata per DEMO, che sarà il primo reattore a fusion per la produzione di energia.

IFMIF-DONES Facility

The need for a facility of this type was identified long time ago and work has been carried out by using different frameworks

In the last 15 years, some key projects has been contributing. Presently more relevant ones are:

•IFMIF/EVEDA (included in the BA)

•WPENS – including specific Industry contract- (EUROfusion WP) extended in 2022

S. Becerril, M. García, A. Ibarra, M. Luque, M. Weber

- B. Bolzon, N. Chauvin, S. Chel, A. Madur, J. Marroncle, L. Seguí
- Ciennot F. Arranz, D. Jímenez, F. Martín-Fuertes, C. de la Morena, C. Oliver, D. Regidor
- D. Bernardi, M. Cappelli, G. Miccichè, F.S. Nitti, T. Pinna
 - J.C. Marugán, J. Gutiérrez, C. Prieto
 - P. Cara, D. Duglue, H. Dzitko
 - W. Królas

IFMI

95

LUNDS

 \mathbf{RB}

- L. Bellan, M. Comunian, A. Palmieri, A. Pisent
- **IREC**⁹ L. Macià, M. Sanmarti
- F. Arbeiter, V. Hauer, Y. Qiu
 - M.J. Ferreira, A. Jansson, M. Eshraqi, C. Martins
 - T. Tadic
 - J. Aguilar, J. Díaz, J. Maestre, A. Moreno, R. Lorenzo, D. Sánchez-Herranz, C.
- **BUCLM** Torregrosa
 - J. Castellanos

+ the whole WPENS IFMIF-DONES Team!!

- General accelerator physics: A. Pisent , E. Fagotti
- Beam dynamics: M. Comunian, L. Bellan, C. Baltador
- Diagnostica del fascio. M. Poggi
- Radio frequenza: A. Palmieri, F. Grespan, A. Baldo
- **Progettazione Meccanica e prototipi** L. Ferrari, P. Mereu, C. Mingioni, M. Nenni, E. Nicoletti, P. Bottin ; F. Scantamburlo (congedo F4E a Rokkasho),
- Computer control L. Antoniazzi, M. Montis, M. Giacchini
- Inoltre, principalmente impegnato nei progetti IFMIF e ESS
 - M. Giacchini,, A. Battistello, A. Colombo, D. Conventi, R. Panizzolo,
- Sia per ESS che per IFMIF è attiva un'intensa collaborazione con INFN TO, Gruppo guidato da P. Mereu [*]
- Possibile coinvolgimento di INFN Milano sulla parte superconduttiva.

[*] situazione attuale, in passato anche sezione di Padova (A. Pepato et al.) e Bologna (A. Margotti et al.)

Tecnologie chiave per l'acceleratore di DONES

INFN Istituto Nazionale di Fisica Nucleare (Italy)

 Meander line choppers are used in other linacs but at such high energy 20 MeV/u (high chopping voltage, 40 kV, and particle speed β=0.2)

Design and simulation of parasitic line for interdisciplinary users (INFN)

 1/1000 bunch extracted with a fast meander line chopper for TOF experiments.

Figure 2: Left: Simplified 3D model of a meander line suspended in vacuum. The main geometrical dimensions are labelled. Right: Meander model inserted in its support.

M. D'Andrea et al. Linac 2024

Simulazione della potenza di fascio (principale e parassita) al setto elettrostatico

- Meander line choppers are used in other linacs but at such high energy 20 MeV/u (high chopping voltage, 40 kV, and particle speed β=0.2)
- main issues analyzed
 - Field distribution seen by beam
 - Best dielectric (in this case is vacuum, the copper meander line is suspended in vacuum)

Table 2: Proposed Design Parameters of the ThreeMeander Sections Composing the Deflector

Section length [mm]	700, 1050, 371
Applied voltage for 100% CF [kV]	±18.7
Aperture between facing lines [mm]	80
Beam exit angle [mrad]	17.85

M. D'Andrea et al. Linac 2024

Design and simulation of parasitic line for interdisciplinary users (INFN)

 1/1000 bunch extracted with a fast meander line chopper for TOF experiments.

Simulazione della potenza di fascio (principale e parassita) al setto elettrostatico

- Five Cryomodules top-loaded \rightarrow integration in the vault
- Two types of HWR's cavities: 19 x low- β and 27 x high- β
- <200 kW RF couplers. Biased T-box design
- 29 x solenoids packages (with steerers, BPM's & BLM's)
- 4 x Short Warm Sections

IFMIF

D (O)NES

- Valve boxes in a parallel room to ease maintenance
- Complete study of cryogenic hazards

Developed by CEA France, prototype cavity construction by Zanon Italy

Superconducting cavities

- The superconducting linac (cryomodules based on HWR and superconducting solenoids) is developed by CEA
- HWR linac concept is hystorically an evolution of HI superconducting linacs like ALPI
- Cavities for IFMIF EVEDA were fabricated_NL low beta (A. Facco et al) in Italy (Zanon)

IFMIF EVEDA HWR designed by CEA

Copper linac construction (RFQ)

INFN development for Brazing

18 modules in three supemodules

•High energy SM built by Cinel, Padua (Italy),

- Intermediate energy built internally by INFN,
- Low energy attributed to RI Koln (Germany), concluded by INFN

Il Sistema RF deve fornire La potenza 5 MW al fascio, e 700 kW al rame dell'RFQ. Rappresenta quindi la principale utenza elettrica di DONES, e l'efficienza è in questo caso fondamentale

The INFN solid state ampli prototype (200kW, 175 MHz , 62% power efficiency)

1st **DONES Steering Committee** held the 16th March 2023 Official start of the **DONES Construction Phase**

4th DONES steering committee 16 Oct. 2024

- Spagna e Croazia, menbri del consorzio DONES, gli altri sono observers.
- Italia ha un MOU fra ministeri della ricerca scientifica e la trattativa per l'ingresso è in corso (con un contributo ENEA al target e INFN all'acceleratore)

Granada 16 Mar. 2023

Granada 16 Oct. 2024

The DONES Programme

Construction of First Auxiliary Buildings

- Il test dei materiali è un aspetto essenziale del programma per l'utilizzo dell'energia da fusione, e richiede una sorgente intensa e innovativa di neutroni
- La costruzione di una sorgente basata su un acceleratore superconduttivo ed un target di litio liquido di alta potenza comporta delle sfide tecnologiche importanti; oggetto del programma IFMIF EVEDA del broader apprach
- Il prossimo passo sarà la costruzione della facility europea DONES a Granada.

Aknowledgements

- Questo programma è stato fortemente sostenuto da INFN, ENEA, F4E e Eurofusion
- La realizzazione ha coinvolto per INFN LNL, Padova, Torino e Bologna,
- l'attività in Giappone sull'acceleratore è avvenuta con strettissima collaborazione fra istituti europei (CEA e CIEMAT nostri principali partner) e con il QST giapponese.