

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

LFR R&D Programme

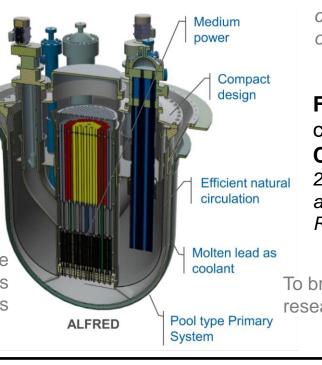
ENEA-INFN: collaborazioni in essere e sviluppi futuri

Bologna, 5th November 2024

Mariano Tarantino Head od Nuclear Energy Systems Division, Nuclear Department

ALFRED and FALCON Consortium

ansaldo nucleare

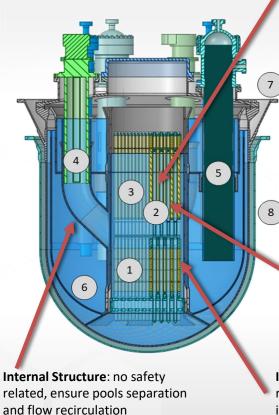


ALFRED (Advanced Lead Fast Reactor European Demonstrator): Lead-based SMR technology

Provided with a comprehensive research infrastructure

SMR-oriented features

Potentialities to demonstrate that the LFR technology can meet the goals set out by GIF for Gen-IV reactors


Developed by the FALCON consortium with European research organizations and industries.

FALCON (international consortium "Fostering ALFRED **Con**struction) was established in 2013 by Italian Ansaldo Nucleare and ENEA, along with the Romanian RATEN-ICN.

To bridge the final gap between conducted research and industrial application

ALFRED Layout

Reactivity control: Two diverse and redundant systems, control and shut-down rods

1

2

3

4

5

6

7

8

Core

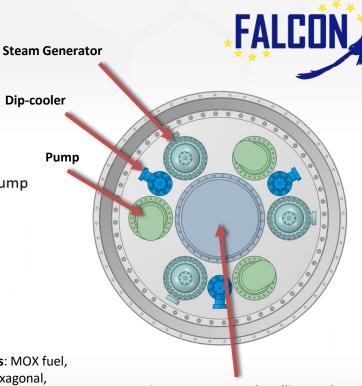
Sub-Assemblies

Inner Vessel

Reactor Coolant Pump

Dip-cooler

Steam Generator


Internal Structure

Reactor Vessel

Safety Vessel

Fuel assemblies: MOX fuel, grid-spaced, hexagonal, wrapped, extended stem

Inner Vessel: safety-related, removable for out-of-vessel inspection

Design to ensure FA handling under lead during refueling operations

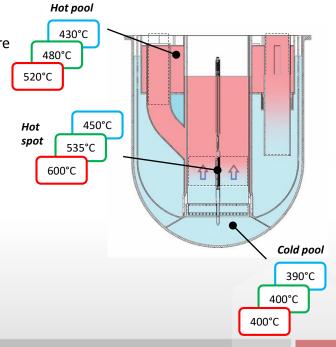
•

ALFRED Staged Approach

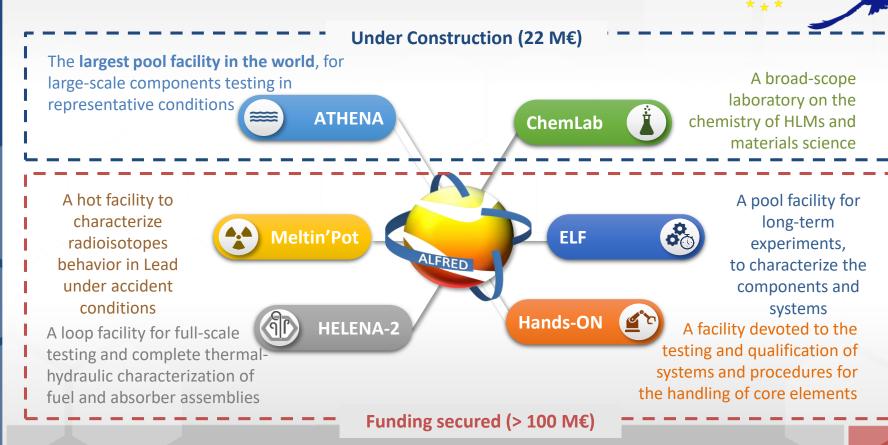
ALFRED will facilitate licensing readiness and operational readiness for western LFR commercial reactors.

Increase in reactor coolant temperature

•


- STAGE 1
 - Proven technology, proven materials, oxygen control, low temperature
 - Aimed at in-core qualification of PLD Al₂O₃ coating for cladding

STAGE 2


- Need for FA replacement
- Aimed at in-core qualification at higher temperature

• STAGE 3

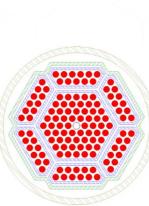
- Replacement of main components (SGs, PPs, dip coolers, ...)
- Representative of FOAK conditions for LFR deployment

ALFRED Research-Infrastracture

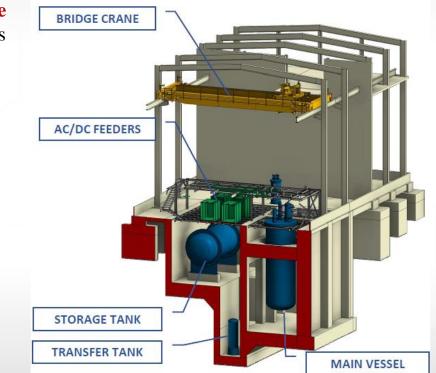
ATHENA

Advanced Thermo-Hydraulics Experiment for Nuclear Application

ATHENA is an **electrically heated 2.21 MW pool type multipurpose facility** representative of LFR systems aimed to investigate pool-TH


Large size vessel (3.2 m diameter, 10 m in height) which is capable to host and test single and coupled full scal components.

Design P \rightarrow 2.0 MPa


Design T \rightarrow 450°C

Flow Rate \rightarrow 130 kg/s

Pb Inventory \rightarrow 800 tons

CORE Simulator 2.21 MW

ATHENA

Installed

- 2.21 MW Core simulator
- Full height bayonet tube heat exchanger
- Main Vessel hosting 800 tons of lead

ALFRED

8

Enlarging the collaboration at European level

Italy

- Investing in LFR research since the 2000s.
- Discontinued national research program in 2018.
- But continued to support industrial research and Euratom projects.
- Now showing renewed interest in nuclear technologies.
- Very open to international collaboration.

Romania

- RATEN-ICN center involved in European projects on LFR since about 2010.
- Declared interest in hosting the first LFR demonstrator (ALFRED) in 2011.
- Joined the FALCON consortium led by Ansaldo Nucleare in 2013.
- Eembedded ALFRED and the associated research infrastructure in multiple national strategy documents.
- Financing the largest and most powerful experimental lead infrastructure in Europe (ATHENA).
- Allocated an additional €100 million over the next 4-5 years.

Belgium

FALC

- Traditionally focused on ADS to LBE solutions.
- In 2022, an analysis of SMR solutions was launched, concluding that LFR is the technology that best meets national targets.
- Allocated an investment of 100 M€ over 4 years.
- SCK CEN is in charge of the research and demonstration activities.
- Experience in licensing process with FANC/Bel-V.
- Managing a fleet of experimental HLM-based infrastructures (including a subcritical reactor).

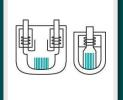
SMR Industrial Alliance

European Industrial Alliance on SMALL MODULAR REACTORS

- Meet decarbonization targets through high temperature heat
- Advanced technology for the closure of fuel cycle
- Proven passive safety features
- Adaptability to wide range of customers
- Competitive economics

Reference design

Simplified, robust, modular


Candidate sites

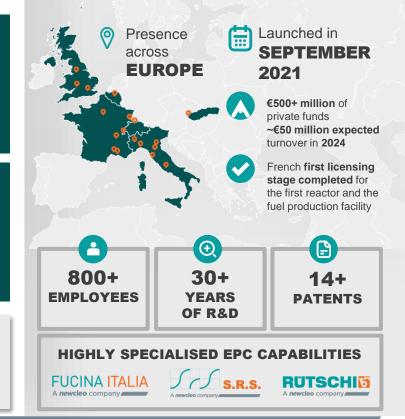
Mol-Belgium and Pitesti-Romania

Shared roadmap

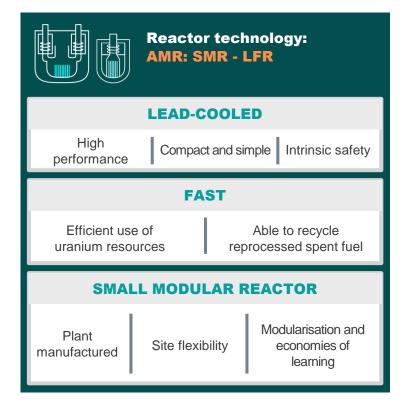
Commercial deployment by 2040

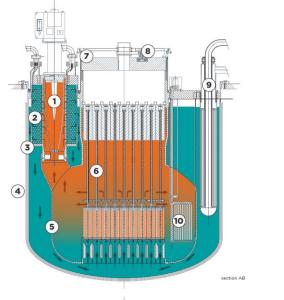
A new, innovative player in nuclear energy

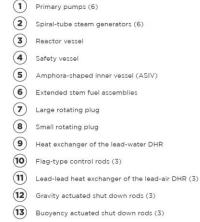
REACTOR DESIGN:

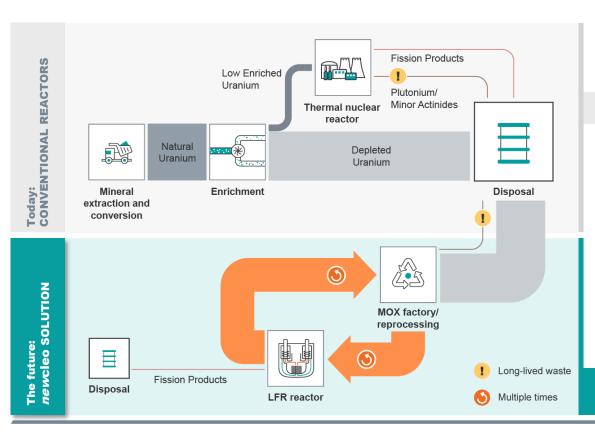

Small Modular (SMR) + Lead-cooled Fast Reactors (LFR) = AMR

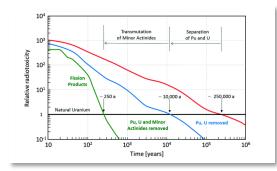
*new*cleo is working to design, build, and operate Gen-IV Advanced Modular Reactors (AMRs) cooled by liquid lead


FUEL MANUFACTURING: Mixed Uranium Plutonium Oxide (MOX)


MOX and Fast Reactors allow the multi-recycling of nuclear waste into new fuel with no new mining for generations




A long-term vision centred on safety and sustainability



Closing the fuel cycle: MOX

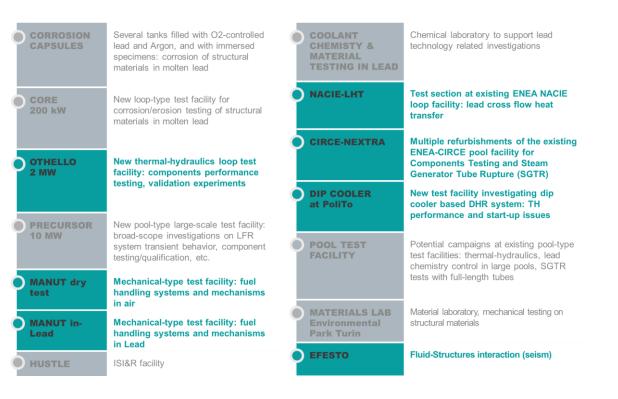
Thermal fission reactors use a very small portion of the extracted uranium: an average 1GWe LWR uses every year 200t of mined uranium of which only 1t is fissioned (Fission Products), the rest is not used

High-level waste has become an expensive liability

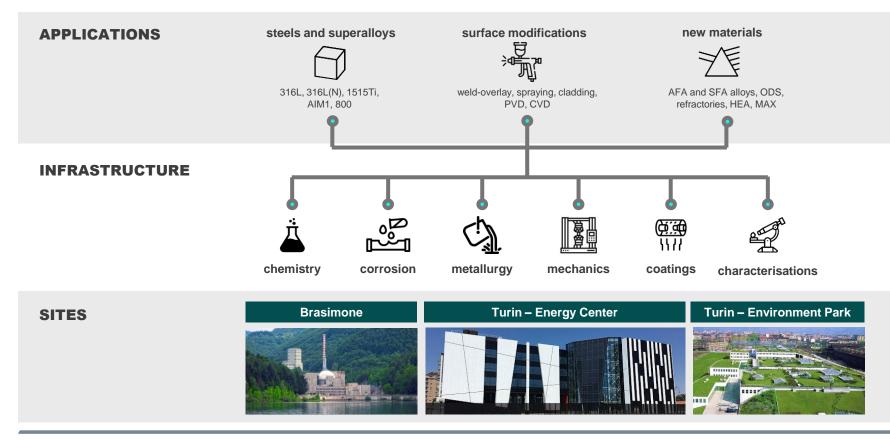
Fast Reactors and fuel reprocessing can extract energy from existing material and at the same time reduce radiotoxicity of residual waste to dispose: Fission Products return to value of the natural uranium ores after ~250 years

All artificial radioactivity created by reactors is virtually gone

*new*cleo's plan-to-market


	AS-30	AS-200	TL-30	
2026	2030	2032	2032	
Precursor	LFR-AS-30	LFR-AS-200	LFR-TL-30	
10 MW electrically heated/non- nuclear facility with turbogenerator It reproduces scaled or full-scale components of the LFR-AS-30	30 MWe nuclear module with core outlet at 430/440° (later 530°), using MOX as fuel Demonstrator and test reactor	200 MWe nuclear SMR, for stand- alone or multi-module configuration, using MOX as fuel First-Of-A-Kind (FOAK) reactor	30 MWe mini nuclear reactor for industrial and maritime applications Working as a closed reactor, with infrequent refuelling (10y +)	

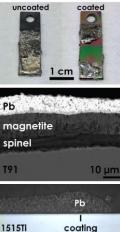
newcleo


R&D needs and experimental infrastructures

Large-scope experimental program to support the development of LFR-AS series technology up to the **full demonstration**

- To address technological aspects related to the use of a **molten Lead** as coolant
- To test and validate novel components
 and systems

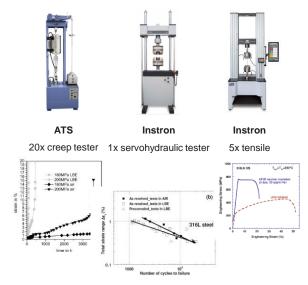
Material Infrastructure



Corrosion lab @ENEA Brasimone (Q4'24)

Static corrosion capsules

- CAPSULES: 6 skids of 3 capsules; 108 samples
- Active control of [O] and T (400-750°C)


Flowing Pb loops

- **CORE-1**: 32x corrosion (1 m/s, T<650°C) + 3x erosion (10 m/s, T<520°C) + cold-trap and mechanical filters
- CORE-2: 120 corrosion samples (1 m/s, T<650°C)

Mechanical tests in Pb

- 20x creep + 2x fracture mechanics frames
- 1 tensile test/SSRT frame

Perform corrosion exposure experiments on steels, surface treatments and new materials, in static and flowing conditions and under mechanical stress

Corrosion lab @ENEA Brasimone (Q4'24)

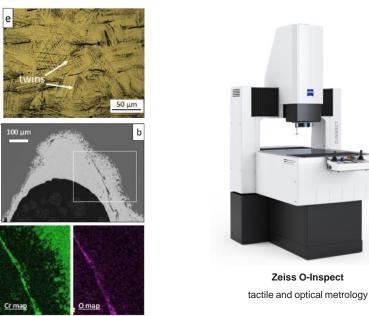
Metallography and Microscopy

base steel

500 um

oxides

70 ur


δ-Ferrite stringers

100 µm

а d

e map

Metrology

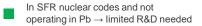
dimensional measurements w/µm precision

Struers cutting and polishing equipment

Zeiss Smartzoom 5 digital microscope

Zeiss Discovery V8 stereoscope

Zeiss Sigma 360 FEG SEM w/EDX


(Oxford)

study metals, corrosion layer thickness, morphology and chemical composition

materials strategy

In SFR nuclear codes but operating in Pb \rightarrow qualification in Pb needed

Operating in Pb, not in codes → substantial R&D required

Component	Phase I (≤ 480°C)	Phase II (≤ 600°C)	Phase III (> 600°C)			
NOT REPLACEABLE						
1. Roof structure	standard steels					
2. Reactor vessel	standard steels					
3. Amphora-shaped inner vessel	surface modifications/new materials					

REPLACEABLE

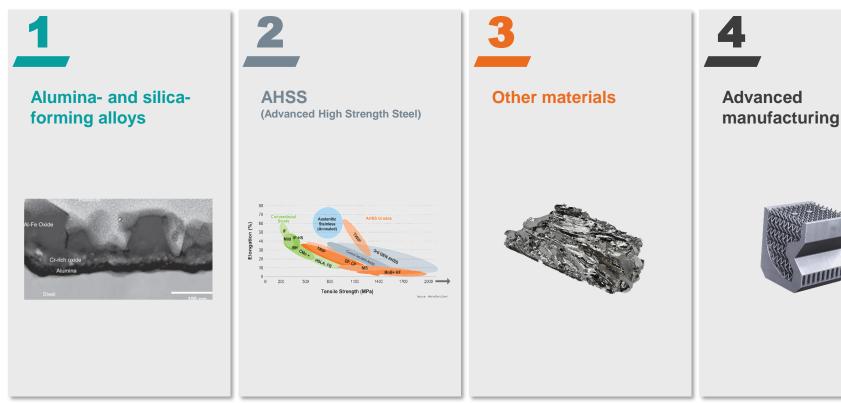
- 4. Primary pump
- 5. Steam generator tubes
- 6. Fuel assemblies
- 7. Control rods
- 8. Decay heat removal tubes
- 9. Other internals

chemistry and irradiations

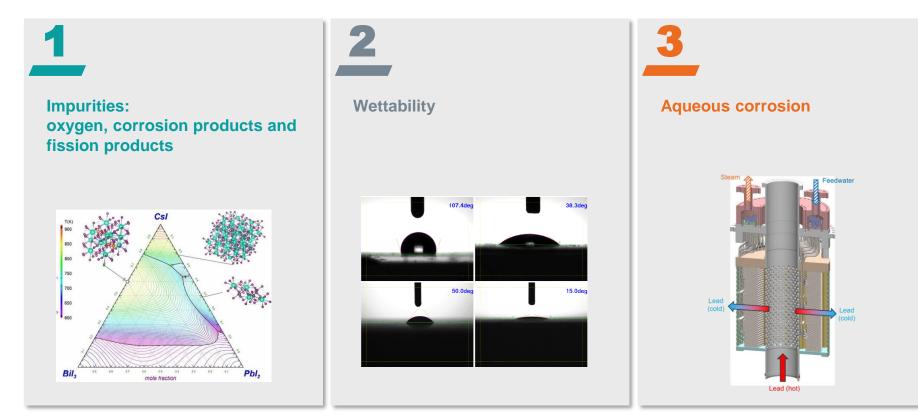
R&D programme 1 – standard steels

R&D programme 2 – surface modifications

Core – simple geometry: PVD and metallurgy methods



Core – complex geometry: CVD and electrochemical methods



R&D programme 3 – new materials

newcleo

R&D programme 4 – chemistry

R&D programme 5 – irradiations

		Programme I	Programme II	Programme III		
ion irradiations			initial iterations: radiation effects on microstructure and mechanical properties		1 4 9 .	
corrosion tests on ion irradiated materials			explore functionality			
neutron irradiations			test actual radiation effects		A-523	
corrosion tests on neutron irradiated mater.		effect of rac	effect of radiation damage on corrosion behavior			
neutron irradiations in lead			test for synergistic effect			
			/			
	ions			neu	trons	
CEA Jannus	Uni Manchester	HZDR/NCBJ/J RC	HFR, NRG	Joyo, JAEA	LVR, CVRez	CEA

Mariano Tarantino mariano.tarantino@enea.it

