

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile

Fission blankets for tritium production in hybrid reactors

F. Panza ENEA – NUC – PLAS (Frascati)

FUNFI-IT workshop, Deember 11, 2024, Centro Ricerche Enrico Fermi (Roma)

Fusion-fission hybrid systems

In a hybrid reactor, the neutron flux emerging from **nuclear fusion reactor** is used to induce fissions (or transmutations) in a **fission blanket** in subcritical mode (k<1).

FFHS can contain a blanket forr:

- Energy generation
- Radioactive waste transmutation
- Nuclear fuel production (fertilization)
- Tritium breeding (currently produced by CANDU reactors)

These systems could represent an intermediate step towards the industrializatio of nuclear fusion

Fission blanket design

neutrons

neutrons

Tritium production reactions

Tritium production reactions XS

Incident neutron data / ENDF/B-VIII.0 / / / Cross section

Tritium production is an important issue for future fusion systems.

Future systems should produce tritium by Lithium irradiation.

Li(n,T)α cross section is far higher (up to 3 order of magnitude) for thermal neutrons

RFP fusion core

Machine section and performances

```
R = 6 m
a = 0.8 m
Plasma current = 11.6 MA
<u>T</u><sub>e</sub> = 11.3 keV
Pohmic heating = 70 MW
P_{fusion} = 108 MW
P<sub>alfa</sub> = 21.6 MW
Pneutron = 86.4 MW
n = 3.8 \times 10^{19} neutron/s
n_{flux} = 2 \times 10^{13} \text{ n/(cm^2 \cdot s)}
```


RFP based FFHR

of the fissile module

- 12 fissile modules arranged around the torus
- Fissile modules completely detached from the fusion plant, easily accessible
- Toroidal field coils external to the cryostat at room temperature

RFP confinement properties adequate for low Q operation $(Q \approx 1)$

- Machine with high accessibility and relatively low complexity
- Inductive operation only

Fission blanket

An RFP-based hybrid system concept has been studied (R=6 m, a=0.8 m). The fission blanket proposed is characterized by a multi-zone design:

- A fast core (fuel MOX- cooling fluid Molten salt)
- A thermal neutron spectrum zone for tritium breeding (FLiBe)

Fission core design

Core dimensions: 50 x 110 x 200 cm³

Molten salt cooling system: NaF – ZrF₄

Fission core lattice

- 2553 rods
- R _{MOX}= 0.6 cm
- R _{clad}= 0.7 cm
- h rod=197.52 cm
- AISI 316 steel cladding thickness: 0.1 cm
- d _{rod-rod}=1.62 cm

Radial power distribution

Obtainable Tritium and synergy with the Fusion Power Plants

Fusion core of the FFHR - Total Tritium in the torus: 50 mg

- Tritium consumption: 0.19 mg/s
- Fusion power: 108 MW

Fission blanket - Fission power in the fast core: 600 MW

- Power in the Lithium box: 120 MW

- Net Tritium production: 140 kg/year

Tritium extraction efficiency from production is difficult to estimate; if it is assumed 50%, the net available Tritium is 65 kg/year. This amount could:

- supply a 1.1 GW fusion power plant without a breeding blanket;
- contribute to supply a fusion power plant with TBR < 1;
- provide the reserve of Tritium for a fusion machine start-up or to supply pulsed machines (ITER, CFETR,...)

Tritium breeding blanket

- $K_{eff} = 0.97$; $P_{core} = 42$ MW; $P_{box} = 10$ MW
- Tritium breeding zone dimensions = 197*110*15 cm³
- FLiBe mass (⁶Li enrichment: 40%) = 645 kg
- Estimated tritium production for the entire machine (12 modules) = 5.56 mg/s (TBR = 29)
- No tritium extraction efficiency has been considered (the presented results take only into account the tritium production process). An optimistic efficiency evaluation can be considered about 50%.
- A similar FFHS can in principle produce the fuel (ε=50%) for a 1/1.5-GW pure fusion device

Alternative brreding materials

- FLiBe, Pb-Li can be useful for a pure fusion blanket (Be and Pb can be used as neutrons moultiplicators)
- Be caould be avoided for its toxicity
- For thermal neutrons the presence of a multiplicator is not necessary and can give the possibility to have a higher Li concentration inside the blanket
- A **solid blanket** (alluminate or silicate) seems to be a good choice also for the extraction method (helium or water)
- A low Li-6 enrichment (or natural concentration) are suggested

Neutron penetration inside breeding blanket

A good thickness choice can bring as uniform as possible the neutron flux intensity inside the blanket

Blanket thickness (cm)

Superconductor magnets shielding

Limits to be respected for superconductors:

- Fast neutron flux (E>0.1 MeV) on the magnet = 10^11 n/cm^2s
- Neutron fluence (E>0.1 MeV) on the magnet = 10^19 n/cm^2
- Total heating for each TFC = 14 kW

Shielding design:

Mixed graphite+tungsten in layers (20 cm g + 5 cm t + 20 cm g + 5 cm t) + steel structure. Graphite slows down neutrons, Tungsten plays the roles of photon screen and neutron absorber

Power and neutron flux limits are respected

Conclusions

- A conceptual design of a RFP-based hybrid reactor for triutium breeding has been presented
- The neutronic design consists of a 2-neutron-spectrum zones: a fast core and a thermal zone for tritium breeding purposes
- The tritium breeding analysis estimates a tritium net production of 5.5 mg/s for this configuration (12 blankets)
- Results show that flux and power requirements for superconductors are respected

Future activities:

- Machine engineering
- Termomechanics analysis (in particular for the breeding blanket)
- Biological shielding

