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Why a control system?

*  What plant

* (Control objectives

* How to design it

* A possible control system architecture

e (Conclusions



Fusion-fission hybrid systems

ITER FUSION PLANT

HYBRID PLANT

Fission

CORE LATTICE

Fusion + Fission Power plant complexity



Control objectives

Magnetic and Kinetic Control Machine Protection and Safety

* Plasma current and shape

*  Divertor configuration (strike points)
* Heatload (ELMs, divertor power)

* Current (J) and Te profiles

* Fusion power

* Iritium control

* Neutron production

ENEN

First wall/divertor heat load protection
H-L back-transition avoidance

MHD control

Disruption avoidance/mitigation
Runaway electron avoidance/mitigation
Instabilities

Impurity events

Radionuclide leakage

Neutronics

Personnel protection



Diagnostics and actuators

* Magnetics * (Central Solenoid (GS) coils

* Reflectometry * Poloidal Field (PF) coils

* ECE * Gas Injection

* Neutron/Gamma diagnostics * Pellet injection

* IR polarimetry/interferometry * Auxiliary Heating (ICRH, ECRH,
* Spectroscopy NBL,...)

* Tomography



EX: EU DEMO diagnostic and control concept

|equi|ibr. control |

kinetic control

Control quantity Operational limits Diagnostics Actuators + interactions
Plasma current safety factor limit (qqs) magnetic diagnostics CS coils

auxiliary heating
Plasma position and shape, |wall loads (FW and div.) magnetic diagnostics PF + CS coils

incl. vertical stability

max. Az / VDE disruption

Reflectometry, ECE
neutron/gamma diagnostics
IR polarimetry/interferometry

auxiliary heating
gas injection

Plasma (edge) density

density limit

Reflectometry
IR polarimetry/interferometry
Plasma radiation

pellet injection (fuel)
gas injection
pumping system

Plasma radiation,
impurity mixture, Z .«

radiation limit
LH threshold

Spectroscopy+radiation meas.
UIoop

impurity gas injection
auxiliary heating

Fusion power

wall loads (FW and div.)
LH threshold

Neutron diagnostics
FW/blanket and div. power (for
calibration only)

pellet injection (fuel)
impurity gas injection
auxiliary heating

Divertor detachment and
heat flux control

divertor wall loads
LH threshold

Spectroscopy+radiation meas.
Thermography

Divertor thermo-currents
Reflectometry, ECE

gas injection (impurities + fuel)
pellet injection (fuel)

PF coils

pumping system

(MHD) plasma instabilities

various (- disruptions)

Reflectometry, ECE

IR polarimetry/interferometry
magnetic diagnostics
neutron/gamma diagnostics

auxiliary heating
ECCD
PF coils

Plasma pressure

beta limit

magnetic diagnostics

density and temperature meas.

auxiliary heating
fuel and impurity injection

‘instabilities/evem‘s |

Unforeseen events (impurity
ingress, component failure)

various (= disruptions)

all

all

From: Wolfgang Treutterer, ITER Control System, IAEA DEMO Programme Workshop 2018, Daejeon



How to design a plant control system

Control

Architecture

* Plant Modelling

« Control strategy (Operating modes)

« Control functions (Conventional, Protection, Safety)
« Control logics

« Control architecture details

« Local control

indentification

* Monitoring needs
Controller - Dingnostios
= characteristics

d esl g n * Actuator characteristics
* Control loop timing
* Control reliability (PFH)

Control system

implementation

« Control framework
*Real-time issues

* Control technology
(HW/SW)



Plant 1&C Architecture

PLANT I&C ARCHITECTURE

PLANT I&C SYSTEMS
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Plant 1&C Architecture

PLANT I&C SYSTEMS
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Plant 1&C Architecture

Relations among Control

Systems

N\ N

A

EPICS

Central
CODAC System

)

~og

N

A 4

Local Conventional
Control System

Local Controller

Signal Interface

J/

Machine Protection
System

Safety System

T
/ ALTERNATIVE to EPICS:

- WINCCOA/OPC
- MARTe2
-  MDSPlus



CODAC - Main components identification

Physical Architecture Software Architecture
CODAC System | —— —
CODAC Console CODAC Client 0S CODAC Client 0S CODAC System
Monitor
HMI Application HMI Application
Keyboard & Mouse
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MPS - Main components identification
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SCS - Main components identification

RAMSES
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Local Control

The Local Controller software have to
The typical Local Controller system consists of one Local provide the following operation:
Controller Cabinet and a set Extension Cabinets. Field data acquisition and generation;
Field data processing, control loops and soft
interlocks execution;
Data exchange with the CODAC Server;
Local HMI.

Physical Architecture

CODAC Network ]

Software Architecture

Local Controller Cabinet

( CODAC Network

Local HMI

l Industrial Ethernet Switch
Local Controller

| Fast/slow controller
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Local Safety Control

Example of SCS redundant command to Example of SCS redundant PFH (Probability of dangerous
stop a safety electric load command to open safety valves. Failure per Hour) 1s used as a target

parameter to measure the hardware

safety integrity of the SCS.

REDUNDANT SENSORS @ REDUNDANT SENSORS @
\ \ ! 3
| |

TRAIN B SIL limits and PFH values

TRAIN A
TRAIN A TRAIN B
SIL Limits and PFH values
| |
~ ~ L ?ANF/;:(F SAFETY
POWER LINE VALVE VALVE 1 <103

ELECTRIC LOAD
(e.g. BEAM POWER,
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< 10-6

N
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Networks and buses

CODAC
Network
Architecture

CODAC Operator CODAC Operator
Station Station (Backup)

CODAC Network — Control Room

CODAC CODAC (Backup)
Server Server
Time Server Time Server
“Interlock ! “Interiock 7!
! MPS Gatewa nteriock
. Network | Y MPS Gateway | Network |
r——F—F - - —— — —— ——
Safety ! | Safety !
SCS Gatewa Yo
| Network | Y °C5 Gateway | Network_ |
CICS
- CODAC Network-Plant == ==
LICS
LCS #1 LCS #i LCS #N
Local Local Local Ethernet — optical fiber
Controller Controller Controller ——— Ethernet - copper
Sensors/ Sensors/ Sensors/
Actuators Actuators Actuators
16




Conclusions

The design of a control system in complex plants:

is not a service that is added at the end of the project (like the electrical system in an apartment)

must accompany the project from the beginning to:

follow its evolution step by step
understand the underlying physics
anticipate problems

identify safety classes

highlight the design limits (excessively heavy constraints in terms of performance, safety;...)

is the technological modality with which the actual integration of all the systems is carried out (most delicate
phase)

is essential to demonstrate safety to the relevant Authority during the licensing phase

It is the part that must follow technological developments more quickly and be able to implement them

It is the only way that humans can interact with machines

can be revolutionized by the incessant development of artificial intelligence (AI)



Conclusions

It's not just technology
but the brain that drives the physics of the experiment!
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