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Why a control system?

• What plant
• Control objectives
• How to design it
• A possible control system architecture
• Conclusions
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Control objectives

Magnetic and Kinetic Control
• Plasma current and shape 
• Divertor configuration (strike points) 
• Heat load  (ELMs, divertor power)
• Current (J) and Te profiles
• Fusion power
• Tritium control
• Neutron production

Machine Protection and Safety
• First wall/divertor heat load protection 
• H-L back-transition avoidance 
• MHD control 
• Disruption avoidance/mitigation 
• Runaway electron avoidance/mitigation 
• Instabilities
• Impurity events
• Radionuclide leakage
• Neutronics
• Personnel protection
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Diagnostics and actuators

Diagnostics
• Magnetics
• Reflectometry
• ECE
• Neutron/Gamma diagnostics
• IR polarimetry/interferometry
• Spectroscopy
• Tomography
• …..

Actuators
• Central Solenoid (CS) coils
• Poloidal Field (PF) coils
• Gas Injection
• Pellet injection
• Auxiliary Heating (ICRH, ECRH, 

NBI,…)
• ….
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EX: EU DEMO diagnostic and control concept 
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EU DEMO diagnostic and control concept

IAEA DEMO Programme Workshop 2018, DaejeonW. Treutterer 13

Control quantity Operational limits Diagnostics Actuators + interactions

Plasma current safety factor limit (q95) magnetic diagnostics CS coils
auxiliary heating

Plasma position and shape, 
incl. vertical stability

wall loads (FW and div.)
max. z / VDE disruption

magnetic diagnostics
Reflectometry, ECE
neutron/gamma diagnostics
IR polarimetry/interferometry

PF + CS coils
auxiliary heating
gas injection

Plasma (edge) density density limit Reflectometry
IR polarimetry/interferometry
Plasma radiation

pellet injection (fuel)
gas injection
pumping system

Plasma radiation, 
impurity mixture, Zeff

radiation limit
LH threshold

Spectroscopy+radiation meas.
Uloop

impurity gas injection
auxiliary heating

Fusion power wall loads (FW and div.)
LH threshold

Neutron diagnostics
FW/blanket and div. power (for 
calibration only)

pellet injection (fuel)
impurity gas injection
auxiliary heating

Divertor detachment and 
heat flux control

divertor wall loads 
LH threshold

Spectroscopy+radiation meas.
Thermography
Divertor thermo-currents
Reflectometry, ECE

gas injection (impurities + fuel)
pellet injection (fuel)
PF coils
pumping system

(MHD) plasma instabilities various ( disruptions) Reflectometry, ECE
IR polarimetry/interferometry
magnetic diagnostics
neutron/gamma diagnostics

auxiliary heating
ECCD
PF coils

Plasma pressure beta limit magnetic diagnostics
density and temperature meas.

auxiliary heating
fuel and impurity injection

Unforeseen events (impurity 
ingress, component failure)

various ( disruptions) all all

eq
ui

lib
r. 

co
nt

ro
l

ki
ne

tic
 c

on
tr

ol
   

   
   

   
 

in
st

ab
ili

tie
s/
ev
en
ts

From: Wolfgang Treutterer, ITER Control System, IAEA DEMO Programme Workshop 2018, Daejeon  



How to design a plant control system

7

Control 
Architecture

• Plant Modelling
• Control strategy (Operating modes)
• Control functions (Conventional, Protection, Safety)
• Control logics
• Control architecture details

Controller 
design

• Local control 
indentification

• Monitoring needs
• Diagnostics

characteristics
• Actuator characteristics
• Control loop timing
• Control reliability (PFH)

Control system
implementation

• Control framework
• Real-time issues
• Control technology
(HW/SW)



Plant I&C Architecture
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Plant I&C Architecture
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Plant I&C Architecture
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Relations among Control 
Systems

ALTERNATIVE to EPICS:
- WINCCOA/OPC
- MARTe2
- MDSPlus



CODAC - Main components identification
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Software ArchitecturePhysical Architecture



MPS - Main components identification
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Three Modular Redundant (TMR) controller for
slow interlocks
Hardwired logics for fast interlocks
Service workstation for configuration and
management
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SCS - Main components identification
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Local Control
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The Local Controller software have to
provide the following operation:
Field data acquisition and generation;
Field data processing, control loops and soft
interlocks execution;
Data exchange with the CODAC Server;
Local HMI.

Software Architecture

Physical Architecture

The typical Local Controller system consists of one Local
Controller Cabinet and a set Extension Cabinets.



Local Safety Control
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Example of  SCS redundant command to 
stop a safety electric load

Example of  SCS redundant 
command to open safety valves.

PFH (Probability of dangerous
Failure per Hour) is used as a target
parameter to measure the hardware
safety integrity of the SCS.

SIL limits and PFH values

SIL Limits and PFH values

1 < 10-5

2 < 10-6

3 < 10-7



Networks and buses
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CODAC Network – Control Room
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Conclusions
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The design of  a control system in complex plants: 
• is not a service that is added at the end of  the project (like the electrical system in an apartment)
• must accompany the project from the beginning to:

– follow its evolution step by step
– understand the underlying physics
– anticipate problems
– identify safety classes
– highlight the design limits (excessively heavy constraints in terms of  performance, safety,...)

• is the technological modality with which the actual integration of  all the systems is carried out (most delicate 
phase)

• is essential to demonstrate safety to the relevant Authority during the licensing phase
• It is the part that must follow technological developments more quickly and be able to implement them
• It is the only way that humans can interact with machines
• can be revolutionized by the incessant development of  artificial intelligence (AI)



Conclusions
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It's not just technology 
but the brain that drives the physics of  the experiment!
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