

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT

Control system design for hybrid nuclear reactors

FUNFI-IT Workshop Rome, Centro Ricerche Enrico Fermi December, 11 2024

Mauro Cappelli ENEA NUC-PLAS

Outline

Why a control system?

- What plant
- Control objectives
- How to design it
- A possible control system architecture
- Conclusions

Fusion-fission hybrid systems

ITER FUSION PLANT

Control objectives

Magnetic and Kinetic Control

- Plasma current and shape
- Divertor configuration (strike points)
- Heat load (ELMs, divertor power)
- Current (J) and Te profiles
- Fusion power
- Tritium control
- Neutron production

Machine Protection and Safety

- First wall/divertor heat load protection
- H-L back-transition avoidance
- MHD control
- Disruption avoidance/mitigation
- Runaway electron avoidance/mitigation
- Instabilities
- Impurity events
- Radionuclide leakage
- Neutronics
- Personnel protection

Diagnostics and actuators

Diagnostics		Actuators		
•	Magnetics	•	Central Solenoid (CS) coils	
•	Reflectometry	•	Poloidal Field (PF) coils	
•	ECE	•	Gas Injection	
•	Neutron/Gamma diagnostics	•	Pellet injection	
•	IR polarimetry/interferometry	•	Auxiliary Heating (ICRH, ECRH,	
•	Spectroscopy		NBI,)	
•	Tomography	•	••••	
•				

EX: EU DEMO diagnostic and control concept

	Control quantity	Operational limits	Diagnostics	Actuators + interactions
equilibr. control	Plasma current	safety factor limit (q ₉₅)	magnetic diagnostics	CS coils auxiliary heating
	Plasma position and shape, incl. vertical stability	wall loads (FW and div.) max. ∆z / VDE disruption	magnetic diagnostics Reflectometry, ECE neutron/gamma diagnostics IR polarimetry/interferometry	PF + CS coils auxiliary heating gas injection
kinetic control	Plasma (edge) density	density limit	Reflectometry IR polarimetry/interferometry Plasma radiation	pellet injection (fuel) gas injection pumping system
	Plasma radiation, impurity mixture, Z _{eff}	radiation limit LH threshold	Spectroscopy+radiation meas. U _{loop}	impurity gas injection auxiliary heating
	Fusion power	wall loads (FW and div.) LH threshold	Neutron diagnostics FW/blanket and div. power (for calibration only)	pellet injection (fuel) impurity gas injection auxiliary heating
	Divertor detachment and heat flux control	divertor wall loads LH threshold	Spectroscopy+radiation meas. Thermography Divertor thermo-currents Reflectometry, ECE	gas injection (impurities + fuel) pellet injection (fuel) PF coils pumping system
instabilities/events	(MHD) plasma instabilities	various (→ disruptions)	Reflectometry, ECE IR polarimetry/interferometry magnetic diagnostics neutron/gamma diagnostics	auxiliary heating ECCD PF coils
	Plasma pressure	beta limit	magnetic diagnostics density and temperature meas.	auxiliary heating fuel and impurity injection
	Unforeseen events (impurity ingress, component failure)	various (→ disruptions)	all	all

From: Wolfgang Treutterer, ITER Control System, IAEA DEMO Programme Workshop 2018, Daejeon

ENEN

How to design a plant control system

Plant I&C Architecture

I&C ARCHITECTURE PLANT

ENEN

Plant I&C Architecture

ENEN

Plant I&C Architecture

CODAC - Main components identification

ENEN

Software Architecture

MPS - Main components identification

Three Modular Redundant (TMR) controller for slow interlocks

Hardwired logics for fast interlocks

Service workstation for configuration and management

MPS MPS Console Service Application Controller #1 Controller #2 Controller #3 Services Services Services Interlocks Interlocks Interlocks logics logics logics I&C Networks

Software Architecture

Three identical control logics running in parallel Voting system: logics 2003

SCS - Main components identification

Local Control

The typical Local Controller system consists of one Local Controller Cabinet and a set Extension Cabinets. The Local Controller software have to provide the following operation: Field data acquisition and generation; Field data processing, control loops and soft interlocks execution; Data exchange with the CODAC Server; Local HMI.

Local Safety Control

Example of SCS redundant command to stop a safety electric load

Example of SCS redundant command to open safety valves.

REDUNDANT SENSORS S S TRAIN A TRAIN B L POWER LINE ELECTRIC LOAD (e.g. BEAM POWER,

LITHIUM PUMP)

PFH (Probability of dangerous Failure per Hour) is used as a target parameter to measure the hardware safety integrity of the SCS.

SIL limits and PFH values					
SIL	Limits and PFH values				
1	< 10 ⁻⁵				
2	< 10 ⁻⁶				
3	< 10 ⁻⁷				

Networks and buses

Conclusions

The design of a control system in complex plants:

- is **not a service** that is added at the end of the project (like the electrical system in an apartment)
- must accompany the project **from the beginning** to:
 - follow its evolution step by step
 - understand the underlying physics
 - anticipate problems
 - identify safety classes
 - highlight the design limits (excessively heavy constraints in terms of performance, safety,...)
- is the technological modality with which the **actual integration** of all the systems is carried out (most delicate phase)
- is essential to **demonstrate safety** to the relevant Authority during the **licensing** phase
- It is the part that must follow **technological developments** more quickly and be able to implement them
- It is the only way that **humans can interact with machines**
- can be revolutionized by the incessant development of **artificial intelligence (AI)**

Conclusions

It's **not just technology**

but the **brain** that drives the physics of the experiment!

Mauro Cappelli mauro.cappelli@enea.it

0110 1100 0010 1101 0110 1110 0010 1101

